Unraveling the mysteries of protein folding and misfolding.
نویسندگان
چکیده
This mini-review focuses on the processes and consequences of protein folding and misfolding. The latter process often leads to protein aggregation and precipitation with the aggregates adopting either highly ordered (amyloid fibril) or disordered (amorphous) forms. In particular, the amyloid fibril is discussed because this form has gained considerable notoriety due to its close links to a variety of debilitating diseases including Alzheimer's, Parkinson's, Huntington's, and Creutzfeldt-Jakob diseases, and type-II diabetes. In each of these diseases a different protein forms fibrils, yet the fibrils formed have a very similar structure. The mechanism by which fibrils form, fibril structure, and the cytotoxicity associated with fibril formation are discussed. The generic nature of amyloid fibril structure suggests that a common target may be accessible to treat amyloid fibril-associated diseases. As such, the ability of some molecules, for example, the small heat-shock family of molecular chaperone proteins, to inhibit fibril formation is of interest due to their therapeutic potential.
منابع مشابه
The threads that tie protein-folding diseases
From unicellular organisms to humans, cells have evolved elegant systems to facilitate careful folding of proteins and the maintenance of protein homeostasis. Key modulators of protein homeostasis include a large, conserved family of proteins known as molecular chaperones, which augment the folding of nascent polypeptides and temper adverse consequences of cellular stress. However, errors in pr...
متن کاملProtein Folding and Misfolding on Surfaces
Protein folding, misfolding and aggregation, as well as the way misfolded and aggregated proteins affects cell viability are emerging as key themes in molecular and structural biology and in molecular medicine. Recent advances in the knowledge of the biophysical basis of protein folding have led to propose the energy landscape theory which provides a consistent framework to better understand ho...
متن کاملMolecular Docking and In Silico Study of Denileukin Diftitox: Comparison of Wild Type With C519S-Mutant
Background: Denileukin diftitox (trade name, Ontak) is the first recombinant immunotoxin (IM), in which the binding domain of diphtheria toxin has been replaced by the amino acid sequence of human interleukin-2 (DT389IL-2) using genetic engineering. Purity, stability, and structural property of the protein are critical factors for the scale-up production of this fusion protein. In this IM, loca...
متن کاملProtein folding: progress made and promises ahead.
Over the past 25 years, enormous breakthroughs have been made in understanding protein folding mechanisms. We have now reached an exciting stage, with consensuses beginning to emerge that combine both theoretical and experimental approaches. In addition, new fields have emerged and burgeoned, including in vivo folding and the study of protein misfolding diseases. In today's post-genomic world, ...
متن کاملStabilization of partially folded states in protein folding/misfolding transitions by hydrostatic pressure.
In the last few years, hydrostatic pressure has been extensively used in the study of both protein folding and misfolding/aggregation. Compared to other chemical or physical denaturing agents, a unique feature of pressure is its ability to induce subtle changes in protein conformation, which allow the stabilization of partially folded intermediate states that are usually not significantly popul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IUBMB life
دوره 60 12 شماره
صفحات -
تاریخ انتشار 2008